Distance-dependent proton transfer along water wires connecting acid-base pairs.

نویسندگان

  • M Jocelyn Cox
  • Rutger L A Timmer
  • Huib J Bakker
  • Soohyung Park
  • Noam Agmon
چکیده

We report time-resolved mid-IR kinetics for the ultrafast acid-base reaction between photoexcited 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS), and acetate at three concentrations (0.5, 1.0, and 2.0 M) and three temperatures (5, 30, and 65 degrees C) in liquid D(2)O. The observed proton-transfer kinetics agree quantitatively, over all times (200 fs-500 ps), with an extended Smoluchowski model which includes distance-dependent reactivity in the form of a Gaussian rate function, k(r). This distance dependence contrasts with the exponential k(r) that is typically observed for electron-transfer reactions. The width of k(r) is essentially the only parameter varied in fitting the proton-transfer kinetics at each concentration and temperature. We find that k(r) likely represents the rate of concerted (multi)proton hopping across "proton wires" of different length r that connect acid-base pairs in solution. The concerted nature of the proton transfer is supported by the fact that k(r) shows a steeper dependence on r at higher temperatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel proton transfer pathways in aqueous acid-base reactions.

We study the mechanism of proton transfer (PT) between the photoacid 8-hydroxy-1,3, 6-pyrenetrisulfonic acid (HPTS) and the base chloroacetate in aqueous solution. We investigate both proton and deuteron transfer reactions in solutions with base concentrations ranging from 0.25 M to 4 M. Using femtosecond midinfrared spectroscopy, we probe the vibrational responses of HPTS, its conjugate photob...

متن کامل

Water-wire catalysis in photoinduced acid-base reactions.

The pronounced ability of water to form a hyperdense hydrogen (H)-bond network among itself is at the heart of its exceptional properties. Due to the unique H-bonding capability and amphoteric nature, water is not only a passive medium, but also behaves as an active participant in many chemical and biological reactions. Here, we reveal the catalytic role of a short water wire, composed of two (...

متن کامل

Water-assisted self-photoredox of 2-(1-hydroxyethyl)-9,10-anthraquinone through a triplet excited state intra-molecular proton transfer pathway.

Using multi-configurational perturbation theory (CASPT2//CASSCF), a novel self-photoredox reaction for 2-(1-hydroxyethyl)-9,10-anthraquinone was proposed to effectively occur through two steps of triplet excited state intra-molecular proton transfer (ESIPT) reaction aided by water wires without the introduction of an external oxidant or reductant. The photoinduced charge transfer along the desi...

متن کامل

Real-time observation of bimodal proton transfer in acid-base pairs in water.

The neutralization reaction between an acid and a base in water, triggered after optical excitation, was studied by femtosecond vibrational spectroscopy. Bimodal dynamics were observed. In hydrogen-bonded acid-base complexes, the proton transfer proceeds extremely fast (within 150 femtoseconds). In encounter pairs formed by diffusion of uncomplexed photoacid and base molecules, the reaction upo...

متن کامل

Solvation and Hydrogen-Bonding Effects on Proton Wires

In this paper, the multiconfigurational molecular dynamics with quantum transitions (MC-MDQT) method is used to simulate the nonequilibrium real-time quantum dynamics of proton transport along water chains in the presence of solvating water molecules. The model system consists of a protonated chain of three water molecules and two additional solvating water molecules hydrogen-bonded to each end...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 113 24  شماره 

صفحات  -

تاریخ انتشار 2009